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Abstract

One approach for developing potential management zones for a variable-rate precision-agriculture
system is to identify areas within a field exhibiting similar yield behavior. In this study, we applied
cluster analysis of multi-year soybean (Glycine max[L.] Merr.) yield to partition a field into a few
groups or clusters with similar temporal yield patterns and investigated the relationships between
these yield clusters and the easily measured properties elevation (and the simple terrain attributes
derived from elevation) and apparent soil electrical conductivity (ECa). The analysis was applied to 5
years of soybean yield data collected from 224 plots arranged along eight transects spanning a 16-ha
field. The partitioning phase of cluster analysis revealed that the 224 locations were best grouped into
five clusters. These clusters were roughly aligned with landscape position and were characterized by
the yield response to growing season precipitation above or below the 40-year average. Canonical
discriminant functions constructed from the simple terrain attributes and ECa predicted correct cluster
membership for 80% of the plots. While not perfect, the discriminant functions were able to capture
the major characteristics of the yield cluster distribution across the field, indicating that these easily
measured variables are strongly related to soybean yield. Applying the functions with high-resolution
terrain and ECa attributes, we mapped soybean yield zones within the 16-ha field and an adjacent
16-ha field where multi-year yield data were not available. Cluster analysis of multi-year yield data
and easily measured terrain and soil date may be useful in constructing effective management zones
within fields and once developed can be applied to similar fields lacking detailed spatial yield data.
Published by Elsevier B.V.
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1. Introduction

One obstacle to applying precision agriculture practices to optimize crop production and
environmental quality is identifying management zones—areas within the field by which
inputs are managed to optimize economic return or environmental impact. Numerous meth-
ods have been used to construct potential management zones, but they essentially fall into
three types. One approach is to use soil properties, e.g., soil series, water holding capacity,
organic matter content, texture, depth to restricting layer, soil fertility test information—to
construct potential management zones (Wibawa et al., 1993; Anderson and Bullock, 1998;
Van Alphen and Stoorvogel, 2000; Ferguson et al., 2002). This approach assumes that the
soil properties that control yield response to inputs are known and measurable. A major
limitation of this approach is that extensive soil sampling, often in grid patterns, is required
which can be costly and labor intensive.

The second approach is designed to circumvent the cost and time required to collect
extensive soil data and instead uses surrogate variables to construct potential management
zones. Typically, these surrogate variables include elevation and the simple terrain attributes
that can be easily calculated from digital elevation data, such as slope and curvature, as these
often account for much of the soil and yield variation observed within fields (Halvorson and
Doll, 1991; Afyuni et al., 1993; Brubaker et al., 1993; Timlin et al., 1998; Yang et al., 1998;
Kravchenko et al., 2000; Fraisse et al., 2001; Kaspar et al., 2003). Apparent soil electrical
conductivity (ECa) is another surrogate variable often used as it is has been found to be
correlated with soil properties that affect yield (Rhoades and Corwin, 1981; Williams and
Hoey, 1987; Kachanoski et al., 1988; McBride et al., 1990; Jaynes et al., 1995b) and has
been found to be highly correlated with yield (Jaynes et al., 1995a). Apparent electrical
conductivity can be measured for fields rapidly and easily using either electromagnetic
induction instruments (Jaynes et al., 1993) or direct contacting equipment (Lund et al.,
1999). While this approach circumvents the necessity to collect costly soil measurements,
it assumes a strong correlation between the surrogate variables and the soil properties that
control yield response to inputs.

The third approach makes no assumption regarding the interaction between yield and
soil or landscape properties but instead uses the yield data directly to identify areas within
a field where crops respond similarly over years (Lark and Stafford, 1997; Stafford et al.,
1999; Lark, 2001). This approach makes the assumption that if yield patterns are similar
over time then the areas must respond similarly to weather variability and management
inputs and may function as effective management zones. Developing management zones
from multi-year yield data is an intuitively attractive approach because it relies on direct
observations to define yield zones rather than assuming a relationship between yield and soil
or surrogate data. Of course, all of these approaches merely identify potential management
zones. Further research is required to test whether or not the management zones identified by
any approach do in fact function as effective management zones for the application of inputs.

Recently,Jaynes et al. (2003)took the third approach for developing potential manage-
ment zones by applying unsupervised cluster analysis to multi-year corn yield data. They
found that a 16-ha field could be partitioned into a few areas or zones where yield patterns
over multiple years were similar. In the interpretation phase of cluster analysis, they found
that these zones were largely determined by yield response to growing season precipitation
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being either above or below the long-term average. Finally, they used the profiling phase of
cluster analysis to determine which, if any, easily measured surrogate variables were use-
ful in predicting the distribution of the potential management zones within the field. They
demonstrated a strong relationship between ECa and simple terrain variables and showed
how these could be used to interpolate the distribution of the potential yield zones within
areas of the field where yield was not measured.

In this study, we apply cluster analysis to 5 years of soybean yield data measured along
multiple transects within the same 16-ha field used in the study byJaynes et al. (2003). We
then use interpretation techniques to investigate the spatial and temporal characteristics of
the resulting soybean yield clusters. In the final profiling step of cluster analysis, we use dis-
criminant functions based on appropriate terrain and ECa data to give insight into the poten-
tial processes and properties that control soybean yield and show how discriminant functions
can be used to map soybean yield zones in areas where long-term yield data does not exist.

2. Materials and methods

The study was conducted on a 16-ha field in central Iowa (42◦05′N, 93◦46′W; Fig. 1)
first described bySteinwand and Fenton (1995)and most recently discussed inKaspar
et al. (2003)andJaynes et al. (2003). Soils in this field were formed in young glacial till of
the Des Moines lobe and are in the Clarion (fine-loamy, mixed, and mesic Typic Hapludolls)
– Nicollet (fine-loamy, mixed, mesic, and Aquic Hapludolls) – Webster (fine-loamy, mixed,
mesic, and Typic Haplaquolls) association (Steinwand and Fenton, 1995). The field has a
gently rolling topography typical of the Des Moines lobe. The field had been in a 2-year
rotation of corn and soybean since 1957 with field management typical for central Iowa
(Karlen and Colvin, 1992; Colvin et al., 1997).

We measured corn and soybean yields for 11 consecutive years starting in 1989. Grain
yield was measured along eight east–west transects spaced 48.8 m apart with a combine

Fig. 1. Location of research field in central Iowa, USA.
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modified to support a weigh hopper mounted inside the grain-storage tank (Colvin, 1990).
A width of 2.28 m (three rows) for corn and 3.81 m for soybean was harvested along each
transect. Crops were harvested by driving the combine for a measured distance and then
stopping to weigh the accumulated grain and measure its moisture content. While the
position and length of each transect were consistent from year-to-year, the exact length
of individual plots within the transects varied in some years, but averaged slightly over
12 m. Yield data were linearly interpolated to correspond to plots of uniform 12.1-m length,
resulting in 28 plots per transect. Thus, 224 (8× 28) yield values on a grid were obtained
for each year (Fig. 2a). Corn yields were adjusted to a moisture content of 155 g/kg and
soybean yields were adjusted to moisture content of 130 g/kg. Starting in 2000, the field
was combined with the 16-ha field to the north and the entire 32-ha field planted to a corn
and soybean rotation with rows running N–S instead of E–W. Soybean yield in 2000 was
measured with the producer’s combine fitted with a yield monitor and GPS system.

2.1. Field attributes

Apparent soil electrical conductivity and elevation were measured across the combined
32-ha field after soybean planting early in June 2000 when the soil profile was near field
capacity. Elevation and position measurements were made with a kinematic DGPS receiver
(Ashtech Z Surveyor, Magellan Corp., Santa Clara, CA1) mounted on an all-terrain vehicle
(ATV). Apparent soil electrical conductivity was measured inductively using an EM-38
electrical conductivity induction meter (Geonics Ltd., Mississauga, Ont., Canada). The
EM-38 was pulled behind the ATV attached to a fiberglass boom (Jaynes et al., 1993,
1995a). The meter was attached to the boom in the vertical dipole position and maintained
8 cm above the ground surface. Apparent electrical conductivity was measured and recorded
with the position and elevation data. Readings were logged every 1 s as the ATV moved
across the field at approximately 4 m s−1 giving measurements about every 4 m. North-to-
south transects were driven approximately 8.7 m apart across the field. Elevation data was
supplemented by collecting additional elevation data by driving along ridges and swales to
minimize interpolation errors in the subsequent terrain model. A base-station GPS receiver,
located at a benchmark on the eastern edge of the field, was used to differentially correct
the roving GPS receiver. Position measurements were reliably within±0.03 m horizontally
and±0.06 m vertically for this equipment.

Position data were referenced to a Universal Transverse Mercator (UTM) projection
(Zone 15, North American Datum 1983). Elevation values were estimated in height above the
ellipsoid (m). The elevation data were used to generate an 8 m× 8 m digital elevation model
(DEM) using Surfer 7.0 (Golden Software Inc., Golden, CO) gridding software and a linear,
isotropic variogram model. The grid was then smoothed using a cubic spline procedure in
Surfer 7.0 creating a 2 m× 2 m DEM. The smoothing procedure was used to reduce the
roughness of the DEM caused by small DGPS measurement errors in elevation. The primary
terrain attributes: EL, elevation (m); SL, slope (the rate of maximum change in elevation

1 Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants
the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion
of others that may also be suitable.
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Fig. 2. Schematic of 16-ha field showing (a) location and numbering scheme for yield plots and transects where
yield measurements were taken within the field, (b) elevation contours in m above mean sea level for the 16-ha
field, and (c) ECa interpolated from electrical conductivity induction measurements.
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to surrounding grid cells, E); PL, plan curvature (curvature of the surface perpendicular
to the direction of slope, (100 m−1); PL < 0 for curvatures that are concave upwards); PR,
profile curvature (curvature of the surface in the direction of the slope, (100 m−1), PR < 0
for curvatures concave upwards); AS, aspect (absolute deviation of the slope direction
from south, E) were then calculated for each 2-m grid cell of the DEM using the Arc/Info
GIS software CURVATURE command (Arc/Info, 1998; Environmental Systems Research
Institute, Redlands, CA). To quantify the effect the closed surface depressions could have
on yield, a depression depth (DD) attribute was calculated. The DEM fill script associated
with the Spatial Analyst extension of ARCView was used to numerically fill in the internal
depressions within the DEM. This new surface was then subtracted from the original DEM
to give the depth of depressions. Values for DD are typically equal to 0 over most of a field
but greater than 0 in areas with closed depressions. A 2-m grid cell coverage of ECa for the
field was created from the survey data using the Arc/Info GIS TOPOGRID command and
an isotropic, Gaussian variogram model.

The 224 transect plots were digitized as polygons and overlaid on the ECa and terrain
coverages. The area within each of the 224 transect plot polygons was converted to a raster
format with a 0.25-m2 resolution to better align with the transect plot borders. The values
of the field attributes for each 0.25-m2 yield-polygon raster were taken from the underlying
2-m grid cells of the appropriate coverage. The mean value for each attribute within each of
the 224 transect plots was calculated by arithmetic averaging of the values for all 0.25-m2

rasters that fell within the specific transect plot polygon.

2.2. Cluster analysis

Cluster analysis is a three-part process comprised of partitioning, interpretation, and
profiling. In the partitioning step, a clustering algorithm is used to divide the members
of a population into one of several clusters or groups such that the differences among
groups are minimized while the differences between different groups are maximized. For
yield data, partitioning groups the transect plots into clusters having similar yield pat-
terns for the 5-year period, while minimizing the similarity in yield patterns between
clusters. After partitioning, an interpretation step is used to examine the yield charac-
teristics that led to the formation of the clusters in order to describe and label the nature
of the different clusters. For yield clustering, this includes characterizing the spatial and
temporal nature of the cluster. The interpretation step can provide valuable insights into
the yield characteristics of each cluster. Profiling is the final step of clustering analysis
and is used to relate the characteristics of each cluster in terms of auxiliary data such as
soil properties not used in the partitioning phase. Profiling focuses on determining not
what directly determined the clusters but on the secondary characteristics of the clus-
ters after they are identified. Here, we used profiling to investigate the relationships be-
tween the yield clusters and the easily measured surrogate variables of terrain and ECa.
By using discriminant analysis for the profiling phase, significant relationships can be
used to predict the occurrence of yield clusters in areas of the field where yield data is
lacking. The discriminant functions can also be used to predict the occurrence of yield
clusters in other fields that lack multi-year yield data but have similar soil and landscape
characteristics.
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Nonhierarchical cluster analysis was performed for soybean yield using data from
the 224 transect plots and PROC FASTCLUS (SAS, 2000). Nonhierarchical cluster
analysis forms independent groups without assuming a hierarchy or tree structure of in-
terconnections. First, the 5 years of soybean yield data were standardized by subtract-
ing the yield median and dividing by the interquartile range. Global values for median
and interquartile range were computed using data from all 224 transect plots and all
years. The transect plots were partitioned into clusters using aK-means algorithm (Hair
et al., 1987) to minimize the sum-of-squares of the standardized yields for cluster members.
Cluster analysis was used repeatedly to group the plots into 2, 3, 4, 5, 6, 7, and 8 clusters
to determine the optimum number of clusters to use. We ended with eight clusters as we
assumed eight to be the maximum number of zones to be of practical use for management de-
cisions. The cluster algorithm was run for 20 iterations or until the change between iterations
in all cluster means was 0. A pseudoF statistic (Milligan and Cooper, 1985) computed as

pseudoF =
(

R2

c − 1

) (
(n − c)

1 − R2

)

whereR2 is for overall prediction of yield by cluster,c the number of clusters, andn is
number of observations was used as an indicator for the optimum number of clusters.

For the interpretation step of cluster analysis, the spatial structure of the resulting clusters
was quantified using Moran’s I statistic (Moran, 1950; Upton and Fingleton, 1985). Moran’s
I is similar in concept to correlation and ranges from−1 to 1. A Moran’s I near−1 indicates
that members of different clusters are evenly interspersed across the field like the colored
squares of a checkerboard. A Moran’s I = 0 indicates a completely random distribution of the
clusters and a value near 1 indicates that members of a cluster are grouped closely together
in space. Moran’s I was calculated using the Excel 97/2000 Visual Basic routine written by
Sawada (1999). The spatial pattern of the yield clusters was also examined qualitatively by
overlaying the yield clusters on the elevation contour map of the field. Interpretation of the
temporal pattern of the clusters was determined by one-way analysis of variance (PROC
ANOVA; SAS, 2000) of the soybean yields for each year with cluster as the main effect.
Where the ANOVAF-test was significant, differences in the mean soybean yields for each
cluster were tested using Duncan’s multiple range test (P= 0.05).

2.3. Multiple discriminant analysis

We used discriminant analysis for the profiling step to quantify the relationship between
the yield clusters and the terrain attributes and ECa. Discriminant analysis is appropriate to
use when the dependent variable (clusters) is categorical and the independent variables are
continuous (Hair et al., 1987). Given a set of yield clusters, discriminant analysis develops
functions of the field attributes that most effectively discriminate between the yield clusters.
Discriminant analysis was also used to develop canonical composites of the field attributes
that best discriminated between the yield clusters. A maximum ofn− 1 canonical compos-
ites can be computed to distinguish betweenn clusters. The canonical composites and the
correlation or loading of each field attribute to the composites were used to examine the
combination of field attributes that influenced yield patterns (Hair et al., 1987).
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To start the discriminant process, a forward step-wise discriminant analysis (PROC
STEPDISC;SAS, 2000), similar to forward step-wise regression, was performed to deter-
mine which readily measured field attributes contributed towards classifying the transect
plots into yield clusters. Values for ECa, EL, SL, PR, PL, AS, and DD averaged for each
yield plot were included in the analysis. In the first step, the field attribute that contributed
most to discriminating between the clusters was brought into the discriminant model. In the
second step, the attribute that contributed most to the discriminating power of the model,
which was not already in the model, was entered into the model if it exceeded the pre-
set significance level for entry. Before each new attribute was entered into the model, the
method tested the attributes already in the model. If the attribute that contributed the least
to the model failed to satisfy a preset significance level for remaining in the model, it was
removed. The step-wise process continued until all attributes in the model meet the crite-
rion to stay and none of the remaining attributes meet the criterion to enter the model. A
moderate significance level (P= 0.15) was used for attributes both entering and leaving the
model because this level was mid-range of the levels found to perform best in the forward
selection methods (Costanza and Afifi, 1979).

Field attributes found to be significant in the step-wise discriminant analysis were used
to develop functions to discriminate between clusters. The data for the 224 plots were
randomly divided into subsets such that each subset had a similar number of members
from each cluster. The first data subset was used as a calibration dataset to develop a set
of functions based on the field attributes that best discriminated between the yield clusters
(PROC DISCRIM;SAS, 2000). The accuracy of these functions was tested by predicting
cluster membership of the yield plots in the second, validation data subset and comparing
with known membership. The calibration–validation process was repeated by reversing
the roles of the two data subsets (double cross-validation), giving two estimates for the
accuracy of the discriminant functions in predicting proper cluster membership. Calibrating
and validating the discriminating functions on two different subsets of the data eliminates
the upward bias of testing the functions on the same data set for which they were calibrated
(Hair et al., 1987).

After evaluating the accuracy of the discriminant functions, a set ofn− 1 canonical
discriminant functions was computed using the combined data from all 224 transect plots.
The canonical composites and the loadings of each field attribute to the composites were
used to identify those combinations of field attributes that are important for explaining
the yield cluster pattern within the field. Finally, the discriminant functions were used in
combination with the 2-m resolution field attribute data to predict the spatial distribution
of yield zones across the southern and northern 16-ha fields where detailed yield data were
lacking.

3. Results

3.1. Field measurements

The elevation contour and interpolated ECa map for the southern 16-ha are shown in
Fig. 2. Total relief within the southern half of the field was about 4.5 m. The field topography
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Table 1
Univariate statistics for soybean grain yield within 224 transect plots, and growing season precipitation
(May–August) by year and 5 years combined

Statistic 1990 1992 1994 1996 1998 5 years combined

Yield (Mg ha−1)
Mean 3.16 3.08 3.12 2.95 2.75 3.01
Standard deviation 0.96 0.36 0.56 0.95 0.93 0.81
Maximum 4.28 3.71 4.11 4.11 3.82 4.28
Minimum 0.00 1.67 1.15 0.00 0.00 0.00
Skew −2.20 −1.25 −1.63 −1.97 −1.76 −2.18
Kurtosis 4.41 1.78 2.69 3.10 2.62 5.10
Median 3.48 3.14 3.29 3.29 3.10 3.23
Interquartile range 0.67 0.39 0.50 0.61 0.89 0.59

Precipitation (mm)a

Sum 732 357 358 555 528 506
a 40-year average precipitation is 442 mm.

within this area was dominated by a closed depression or pothole in the west-central region
(maximum DD = 0.38 m) and by hills in the north-central and northeast areas. Occurrence
of potholes is typical in this geologically young landscape that is characterized by a poorly
defined surface drainage system (Andrews and Dideriksen, 1981). A low ridge spanned the
eastern to south-central portion of the field. Apparent electrical conductivity varied from 9.9
to 67.9 mS m−1, which we have found to be typical for springtime ECa surveys of soils in
this area. Apparent electrical conductivity was higher in the lower portions of the landscape
where more poorly drained, finer-textured soils high in soil organic matter predominate.
Lower ECa values were measured near hill and ridge tops where well-drained, coarser-
textured, eroded soils are common in this landscape. These trends reflect the expected
general relationship of higher ECa values in areas with higher soil–clay contents, which are
also the areas with higher water contents when the field is near field capacity.

Soybean yield from the transects and growing season precipitation (May–August) are
given in Table 1. Wetter than average weather in 1990, 1996, and 1998 caused complete
loss of soybean yield in some transect plots due to temporary flooding and reduced the
field-average yield in 1998. Zero or very low yields in the wetter years were centered on the
pothole in the west central region of the field (Fig. 2) where runoff occasionally ponded for
several days. The maximum average yield occurred in 1990, which was also the year when
the highest yield for any transect plot was measured. Yields were markedly more uniform
in the drier years of 1992 and 1994, which was also observed for corn yields in this field
(Jaynes et al., 2002; Kaspar et al., 2003). Yield distributions in every year were negatively
skewed with the median exceeding the mean, and failed the Kolmogorov–Smirnov test for
normality.

3.2. Partitioning

Partitioning the 5 years of soybean yield data into two to eight clusters gave five as
the optimum number of clusters as determined by local maximum values for the pseudoF
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Fig. 3. Yield cluster classification for the 224 transect plots overlaid on the elevation contours for (a) soybean and
(b) corn. Transect plots shown 3× actual width for better visibility. Corn yield clusters fromJaynes et al. (2003).

statistic (results not shown). Dividing the field into more than five clusters tended to create
clusters with only one or two members—a result not desireable for clustering analysis (Hair
et al., 1987). Yield plot membership within the five clusters ranged from 4 within one cluster
to 135, or more than half of the total number of transect plots, in another.

3.3. Interpretation

The spatial distribution of the five clusters was not random across the field, but appeared
to form contiguous areas instead (Fig. 3a). Moran’s I for the soybean cluster distribution
was 0.74 (P< 0.001) confirming that the clusters tended to group together within the field. It
is important to note that this spatial correspondence was not a direct result of the clustering
algorithm, which partitioned the plots based on yield patterns over the 5 years but used no
spatial information. Rather, the resulting spatial structure of the clusters reflected spatial
correlation of some underlying property or process that affected yield. Had the yield clusters
formed a more random spatial pattern, variable rate application of inputs would not be a
viable management alternative for this field.

The distribution of soybean yield clusters within the field loosely followed landscape
position (Fig. 3a). One cluster had members that were located entirely within the pothole
area of the field and for convenience will be referred to as the Pothole cluster. Adjacent to the
pothole, but slightly higher in the landscape was a small extent of a second cluster we will
call the Toeslope cluster. A third cluster contained yield plots at lower elevations that were
not located within closed depressions and will be called the Footslope cluster. Members of a
fourth, Shoulder cluster, occupied scattered Shoulder and hill top locations within the field.
The fifth or Backslope cluster contained transect plots that were generally higher that the
Footslope plots and lower than the Shoulder plots. That the yield clusters would be roughly
congruent with landscape positions is not surprising for this field. Developed in uniform
parent material, most differences in soil across the field were caused by soil forming factors
driven by topography. After farming commenced on this field, erosion would have been
greatly accelerated and this too would have been controlled by topography, with sediment
moving from the higher, steeper locations and depositing in the lower and depressional
areas of the field (Pennock and de Jong, 1987).
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Table 2
Deviation of growing season rainfall above or below 40-year average for each year, and means of soybean yield
by year and cluster

Year Rainfall Mean yield (Mg ha−1)

Pothole Toeslope Footslope Backslope Shoulder

1990 Above 0.26 ea 1.67 d 3.19 b 3.62 a 2.48 c
1992 Below 3.14 b 3.56 a 3.25 b 3.10 b 2.29 c
1994 Below 3.55 a 3.55 a 3.21 b 3.22 b 1.69 c
1996 Above 0.28 e 0.70 d 3.00 b 3.44 a 1.90 c
1998 Above 0.00 d 2.56 b 2.35 bc 3.30 a 2.12 c

Analysis of variance results were significant (P< 0.001) for each year.
a Means within a row followed by same letter are not significantly different atP= 0.05 using Duncan’s multiple

range test.

Differences in soybean yield for each cluster and year were tested by one-way analysis
of variance (Table 2). In every year, there was a significant difference in the soybean yield
among the clusters (P< 0.001). Testing of means revealed a simple temporal pattern in the
soybean yields averaged by cluster. In years with above average growing season precipitation
(1990, 1996, and 1998), the Backslope cluster had the highest mean soybean yield and the
Pothole cluster had the lowest mean yield of the five clusters. In 1990 and 1996, the pattern
in mean yield for the other three clusters was Footslope > Shoulder > Toeslope. In 1998,
the yield pattern for the three clusters was reversed with Toeslope > Shoulder and neither
the Toeslope nor Shoulder cluster significantly different than the Footslope cluster. In the 2
years with below average growing season precipitation (1992 and 1994), the pattern for the
mean yields within the clusters was markedly different (Table 2). In these years, the Toeslope
cluster had greater mean yield than the Footslope, Backslope, and Shoulder clusters and the
mean yield for the Pothole cluster equaled or exceeded these three clusters. The Shoulder
cluster had the lowest mean yield of all clusters in years with below average growing season
precipitation.

That the cluster yields exhibited different patterns depending on growing season precip-
itation being above or below the 40-year average, implies that the partitioning of the yield
plots was strongly determined by yield response to soil moisture. Yield clusters lower in the
landscape (Pothole and Toeslope) had relatively lower soybean yields in wetter years than
in drier years, most likely because of excess soil moisture as well as observed short-term
flooding of the pothole. Toeslope yields were nearly as poor as Pothole yields in 1996, but
significantly better in 1990, and much better in 1998, indicating that Toeslope clusters were
not as affected by excess soil moisture or flooding. In the years that growing season precipi-
tation exceeded the average, 1998 had the smallest excess, which may explain why Toeslope
yields were better that year. But growing season precipitation was 180 mm greater in 1990
than 1996 while the Toeslope yields were worse in 1996 than 1990. Thus, deviation from
average growing season precipitation was a useful indicator of yield pattern, but knowing
that the weather was wetter than average was not sufficient for determining average yield
of the Toeslope cluster relative to the other clusters.

The Footslope cluster had nearly the same average yield as the Backslope cluster in the
drier years. But, in wetter years, average yield of the Footslope plots were lower than average
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yield of Backslope plots perhaps due to excessive soil moisture reducing soil aeration in
the lower areas of the landscape (Logsdon et al., 1999) caused by runoff from higher
elevations and interflow. Transect plots in the Shoulder cluster consistently had average
yields lower than the field average (Table 1) regardless of the amount of growing season
precipitation. These plots occupied landscape positions that typically are the most eroded
and depleted of soil organic matter—conditions that have been found to reduce yield (Olson
and Nizeyimana, 1988; Thompson et al., 1991).

Jaynes et al. (2003)used the same partitioning method and found that corn yields within
this field also formed five clusters that roughly aligned with the same landscape positions as
found for soybean (Fig. 3b). In addition, the temporal patterns within the corn clusters also
reflected the deviation from average of growing season precipitation. Although similar, the
distribution of soybean and corn yield clusters within the field exhibited some differences.
The number and extent of Pothole yield clusters for soybean expanded slightly and the
Toeslope clusters reduced in number in comparison with the equivalent corn clusters. Also,
some transect plots nonadjacent to the pothole were assigned to the Toeslope corn yield
cluster during partitioning, which did not occur for soybean. This shift in the extent of
the clusters impacted by above average precipitation agrees with other research that shows
that soybean is less susceptible to yield loss from wet soil conditions than corn (Evans and
Fausey, 1999).

The number of members in the Backslope and Shoulder clusters was greater and the
number of members in the Footslope cluster was lower for soybean compared with corn.
For soybean, more transect plots fell within the Backslope cluster (60%) than any other
cluster. While for corn, the Footslope cluster contained the most transect plots (54%).
Because yields in the Footslope plots were relatively lower in wetter than average years,
this again implies that soybean yields were less affected by wet weather than corn or that the
wet years when soybean was grown were not as wet or had different patterns of precipitation
than wet years when corn was grown.

Another marked difference in the soybean cluster distributions occurred for Plots 6–12
along Transect 7 in the NE quarter of the field (Fig. 3). These plots partitioned into the
Shoulder cluster for soybean, even though they traversed a swale in the landscape. This is in
marked contrast to the other members of this cluster, which occupied hilltop and Shoulder
locations. Also, partitioning of corn yields placed these transect plots into Backslope and
Footslope clusters as would be expected from their position in the landscape. Clearly,
factors other than landscape position, such as weeds or disease, affected yield in this area
for soybean but not corn. For example, soybean cyst nematodes are known to infest this
field and could have lowered soybean yields in some areas of the field while not affecting
corn yields even with the use of resistant cultivars.

3.4. Profiling

That the soybean clusters generally followed landscape position suggested that terrain
attributes might serve as effective surrogate measures for yield behavior. Discriminant
analysis was conducted to determine if the easily measured surrogate variables, ECa and the
terrain attributes, differed by yield cluster and were adequate for predicting the membership
of the plots within the different yield clusters. Step-wise discriminant analysis indicated that
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Table 3
Number of transect plots in each test data set by soybean yield cluster, and the number of these transect plots
predicted to fall into the five yield clusters using discriminant functions derived from ECa and terrain attributes

Known yield cluster Test data set # Plots in zone Predicted plots in yield cluster

Backslope Pothole Toeslope Shoulder Footslope

Backslope 1 67 60 0 0 2 5
2 68 57 0 0 1 10

Pothole 1 8 0 5 3 0 0
2 7 0 6 0 0 1

Toeslope 1 2 0 0 1 0 1
2 2 0 0 1 0 1

Shoulder 1 9 3 0 0 6 0
2 10 2 0 0 7 1

Footslope 1 26 7 0 0 1 18
2 25 6 0 0 0 19

ECa and the terrain attributes, SL, PL, AS, and DD were significant in determining cluster
membership (analysis not shown). This was somewhat different than the results ofJaynes
et al. (2003)for corn yield clusters where the terrain attributes EL and PR were also found to
be significant. They did not include the terrain attribute DD in their analysis. As a result of
the step-wise analysis, canonical discriminant analysis was conducted for soybean clusters
using only ECa, SL, PL, AS, and DD as explanatory variables.

Using the double cross-validation approach, two independent estimates of the accuracy
of the canonical discriminant functions were made. Overall, the discriminant functions
developed from ECa and terrain attributes were able to correctly predict cluster membership
for 80% of the transect plots for both data subsets (Table 3). Half of the Toeslope members
were classified incorrectly by the canonical functions using either half of the data, but
this yield cluster only contained a total of four members. Membership in the other yield
clusters was predicted about equally well, ranging between 62 and 89% accurate. The
most common misclassification for the Backslope plots was into the Footslope cluster and
most common misclassification for the Footslope plots was into the Backslope cluster.
These were the two largest clusters and were adjacent on the landscape and many of the
misclassifications occurred at the transition between these two clusters along the transects.
Misclassifications of Shoulder plots occurred along Transect 7, Plots 7–11, and the area
where soybean clustering differed most from corn clustering. Including ECa with the terrain
attributes did not account for the soybean yield behavior in this area of the field further
implying that soybean yields were being affected by either some nonedaphic condition or
a soil property not correlated well with ECa.

The 80% prediction accuracy appears high, but is best evaluated against the maximum
chance and proportional chance criteria (Hair et al., 1987) to gage the utility of the multiple
discriminant functions. The maximum-chance criterion is equivalent to the classification
percentage when all the yield plots are classified into the single cluster with the greatest
number of members (Backslope cluster). The maximum-chance criterion was 60 and 61%
for the two subsets, respectively. The proportional chance criterion was computed by sum-
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Table 4
Results of canonical discriminant analysis of the field attribute data for identifying soybean yield clusters showing
eigenvalues, proportion of partitioning accounted for by each composite, and the loadings of each field attribute
on the composite

Composite 1 Composite 2 Composite 3 Composite 4

Eigenvalue 5.57 0.81 0.45 0.00
Proportion 0.81 0.13 0.07 0.00

Loadings
ECa 0.445 −.541 0.663 −0.164
SL −0.356 0.834 −0.176 0.286
PL −0.071 0.703 0.164 −0.182
AS −0.083 −.246 0.346 0.870
DD 0.995 0.025 −0.074 0.046

ming the squares of the fractional membership in each cluster and was 42 and 43% for
the two subsets, respectively. Thus, the classification success percentages for the two sets
of discriminate functions exceeded both chance criteria by≥19%, indicating that the field
attributes were useful for classifying yield plots into the correct clusters.

Thus, the discriminant analysis indicated that there was a strong relationship between
the terrain attributes and ECa and the soybean yield clusters, but that these field attributes
were not sufficient by themselves to completely account for all of the yield clustering. This
failure was the result of the yield patterns not being determined by terrain and ECa alone.
Most likely soil properties not correlated with terrain or ECa and factors such as disease
and weed distributions, or current or past management practices also affected yield.

Canonical discriminant functions were calculated after combining data from all 224
transect plots. Of the four possible composite functions, only the first two were important
for identification of cluster membership (Table 4). The first composite accounted for 81%
of the discrimination between clusters and was most heavily loaded by DD and secondly by
ECa. This composite was very effective in distinguishing the Pothole and Toeslope clusters
from each other and less effective in distinguishing the Footslope from Backslope cluster
(Fig. 4). The second canonical composite accounted for 13% of the overall discrimination
and was most heavily loaded by SL, PL, and ECa. This composite was most effective in
discriminating plots in the Shoulder cluster from plots in the Backslope cluster. The last
two composites accounted for 7% of the overall discrimination and with eigenvalues	1,
were not very important for identifying cluster membership.

While the field attributes investigated here were unable to completely predict member-
ship, the 80% success rate indicates that spatio-temporal soybean yield patterns within this
field are strongly related to processes or properties that are reflected by terrain properties
and soil ECa. These field attributes can also be used as a first approximation of the distribu-
tion of yield clusters across the field by using the discriminant functions developed above.
Applying these discriminant functions to the 2-m resolution data for terrain attributes and
ECa collected for the combined northern and southern 16-ha fields, yield clusters can be
estimated for areas where yield data were not collected (Fig. 5).

Comparing these predicted yield zones with the partitioning results for the transect plots
again illustrates the ability of the field attributes to predict spatio-temporal yield behavior.
As expected, the soybean yield zones constructed from the discriminant functions and 2-m
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Fig. 4. Separation of the 224 transect plots as determined by the first two canonical discrimant functions constructed
from terrain attributes and ECa. Plots are identified by cluster membership as determined by partitioning.

resolution field attributes did not correctly identify the aberrant lower yields found in Plots
6–12 along Transect 7. Also, transitions from one cluster to another were not always pre-
dicted accurately. Overall, however, the yield zone map faithfully captured the yield parti-
tioning of the multi-year soybean data and covered the areas between the transects within
the southern field where yield data were not available.

The process also predicted the distribution of soybean yield zones across the northern
field where no yield data was collected prior to 2000. No Pothole or Toeslope yield zones
were predicted for this field, but the other three zones were well represented. To test the utility
of these predicted zones, mean soybean yields for 2000 were computed for the different
zones in the southern and northern fields by overlaying the farmer’s yield monitor data on
the yield zone map inFig. 5. Growing season precipitation in 2000 was below the 40-year
average so we would expect a yield pattern for the yield zones to be similar to patterns
in 1992 and 1994.Table 5shows that the mean soybean yield follows this pattern fairly
well. In the southern field, the Pothole and Toeslope yield zones had the highest average
yields and the Shoulder yield zone had the lowest average yield. As in the other years with

Table 5
Yield mean and standard error (S.E.) by predicted yield zone for soybean harvested in 2000 from the southern and
northern 16-ha fields

Yield zone (Mg ha−1) Southern field Northern field

Mean S.E. (±) Mean S.E. (±)

Pothole 3.38 0.24 –a –
Toeslope 3.20 0.22 – –
Footslope 3.06 0.55 3.04 0.48
Backslope 2.94 0.63 2.84 0.33
Shoulder 2.62 0.86 2.43 0.40

a Yield zone not present within field.
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Fig. 5. Yield clusters for the 224 transect plots overlaid on the predicted yield zones for the southern and northern
16-ha fields. Yield zones were determined from the canonical discriminant functions and high resolution terrain
attributes and ECa. Transect plots shown 3× actual size for better visibility.

below average growing season precipitation, the Footslope and Backslope yield zones had
similar average yields that lay between these extremes. The North field had a similar pattern
although no Pothole or Toeslope yield zones were present. The Shoulder yield zone had by
far the lowest average yield and the Footslope and Backslope yield zones had average yields
similar to each other and to the average yields in their counterpart zones in the southern
field. Thus, the discriminant functions may be valuable in developing soybean yield zones
in similar fields where multi-year spatial yield data are not available.

4. Conclusions

Cluster analysis of multi-year soybean yield data partitioned the data into five clusters that
roughly aligned with landscape position within a 16-ha field. The clusters were characterized
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by the yield response to years having above and below average growing season precipitation
and by their rough alignment with landscape position. In growing seasons with greater than
long-term average precipitation, yields in the Pothole and Toeslope clusters (i.e., clusters
located lower in the landscape) were lower than the field mean. Whereas in years with lower
than average precipitation, yields in these clusters were equivalent or better than yields in the
Backslope cluster and greater than the field average. Cluster analysis identified a Shoulder
zone where yields were always below the field average regardless of precipitation. Soybean
clusters were similar to yield clusters found independently for corn in an earlier study (Jaynes
et al., 2003). This similarity reflects the role of landscape position in crop growth and yield
in rain-fed fields and reflects the general importance of soil moisture, both insufficient and
excess, in determining crop yields.

The terrain attributes SL, PL, AS, and DD and ECa were effective in correctly identifying
yield cluster membership for 80% of the 224 transect plots. Misidentification of the other
20% was due to unknown terrain or edaphic properties, pest or disease distributions, or man-
agement practices, and illustrates the danger of determining yield zones exclusively from
soil or related data as our understanding of all the factors that control spatio-temporal yield
distributions is imperfect. Nevertheless, 80% accuracy means that these easily measured
field attributes are strongly related to soybean yield and can be used, as a first approxima-
tion, to map the distribution of yield zones in similar fields where multi-year spatial yield
data are not available.

At this point, we have developed soybean yield clusters using cluster analysis applied
to multi-year yield data collected along transects. We have shown that elevation and ECa,
which are easily measured and often effective as surrogate variables for soil properties and
processes, are highly related to the yield clusters. Moreover, these variables can be used as
disciminant functions to predict spatial distribution of soybean yield clusters in areas with
similar landscape and soil characteristics, but where yield data are not available. Yield zones
represent areas of the field where soybean plants respond similarly to weather and uniform
management across years as indicated by yield and respresent sensible management zones
for varying agricultural inputs. However, these zones must be thought of as potential man-
agement zones only. A necessary next step is to determine if there are unique relationships
between the yield response in these zones and the management of inputs. For example,
if the economically optimum fertilizer rate differed by yield zone then these zones would
form effective units for fertilizer management. If this next step proves successful, then yield
zones could be used effectively as management zones in a variable rate, precision farming
program.
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